Topics in the November 2012 Exam Paper for CHEM1102

Click on the links for resources on each topic.

2012-N-2:

Weak Acids and Bases

2012-N-3:

- Weak Acids and Bases
- Calculations Involving pKa

2012-N-4:

- Physical States and Phase Diagrams
- Intermolecular Forces and Phase Behaviour

2012-N-5:

Coordination Chemistry

2012-N-6:

- Physical States and Phase Diagrams
- Crystal Structures
- Periodic Trends in Aqueous Oxide

2012-N-7:

- Periodic Trends in Aqueous Oxide
- Crystal Structures

2012-N-8:

Solubility Equilibrium

2012-N-9:

Kinetics

2012-N-10:

- Aldehydes and Ketones
- Alcohols
- Alkenes
- Carboxylic Acids and Derivatives

2012-N-11:

- Amines
- Organic Halogen Compounds
- Carboxylic Acids and Derivatives

2012-N-12:

- Stereochemistry
- Synthetic Strategies

2012-N-13:

Alkenes

- Aldehydes and Ketones
- Synthetic StrategiesOrganic Halogen Compounds

2012-N-14:

Alkanes

2012-N-15:

- Alkenes
- Stereochemistry

THE UNIVERSITY OF SYDNEY

CHEMISTRY 1B - CHEM1102 SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2012

TIME ALLOWED: THREE HOURS

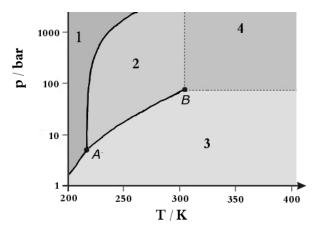
GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 21 pages of examinable material.
- Complete the written section of the examination paper in **INK**.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Only non-programmable, University-approved calculators may be used.
- Students are warned that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 16 and 24 are for rough working only.

OFFICIAL USE ONLY


\	Multiple choice section			
		Marks		
	Pages	Max	Gained	
	2-8	29		
	Short an	swer se	ection	\

	Marks			
Page	Max	Gaine	d	Marker
9	4			
10	4			
11	5			
12	9			
13	4			
14	3			
15	6			
17	3			
18	6			
19	4			
20	7			
21	6			
22	4			
23	6			
Total	71			

• Citric acid, $C_6H_8O_7$, has three p K_a values: p $K_{a1} = 3.13$, p $K_{a2} = 4.76$ and p $K_{a3} = 6.40$. Explain, giving exact volumes and concentrations, how to make 1.0 L of a citrate-based buffer with pH 5.58.		

• The phase diagram of carbon dioxide is shown below.

Marks 5

Identify the four phases, shown as 1 - 4, in the phase diagram.

1

2

3

4

What names are given to the two points A and B?

A

В

What are the physical characteristics of carbon dioxide in phase 4?

Why is the line between phases 1 and 2 almost vertical at pressures below 100 bar?

 $[Co(en)_2(NH_3)_2]Br_3$

Marks • The following three complex ions can all exhibit isomerism. Name the type of 9 isomerism involved in each case and draw the structures of the isomeric pairs. $ox = oxalate = C_2O_4^{2-}$ $\left[CrCl_2(NH_3)_4\right]^+$ $\left[\mathrm{Fe}(\mathrm{ox})_3\right]^{3-}$ $\left[Co(NH_{3})_{3}(OH_{2})_{3}\right]^{3+}$ 3 • Give the systematic name of each of the following compounds. en = ethylenediamine = 1,2-diaminoethane = $NH_2CH_2CH_2NH_2$ $Cs_2[PtF_6]$

Page Total:

CHEM1102	2012-N-7	2208(a)
Order either one of the two following sexual the reasons for your order.	ets of oxides in terms of increasing acidity.	Marks 2
1. HBrO ₄ , H ₃ AsO ₄ , H ₂ SeO ₄	2. HClO ₂ , HClO, HClO ₄ , HClO ₃ .	
A binary alloy has a face-centered cubic faces and atoms of element B at the corn Explain your reasoning.	e structure with atoms of element A in the ners. What is the formula of the alloy?	1

•	What is the solubility of scandium hydroxide, $Sc(OH)_3$, $(K_{sp} = 2 \times 10^{-30})$ in water? Give your answer in g per 100 mL.		Marks 2
		Answer:	
•	How does the interplay of ΔH and ΔS affer between solid and liquid water?	ect the spontaneity of the phase change	4

• Consider the reaction $A(g) + B(g) + C(g) \rightarrow D(g)$ for which the following data were obtained at 25 °C.

Marks 3

Experiment	Initial [A] $(\text{mol } L^{-1})$	Initial [B] $(\text{mol } L^{-1})$	Initial [C] $(\text{mol } L^{-1})$	Initial rate (mol L ⁻¹ s ⁻¹)
1	0.0500	0.0500	0.1000	6.25×10^{-3}
2	0.1000	0.0500	0.1000	1.25×10^{-2}
3	0.1000	0.1000	0.1000	5.00×10^{-2}
4	0.0500	0.0500	0.2000	6.25×10^{-3}

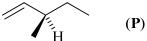
Write the rate law and calculate the value of the rate constant.

		Marks
•	Complete the following table.	6

STARTING MATERIAL	REAGENTS/ CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)
	1. NaBH ₄ 2. H [⊕] / H ₂ O	OH
	Cr ₂ O ₇ ^{2⊖} /H [⊕]	
	dilute H ₂ SO ₄	OH
	1. NaOH 2. CH ₃ Br	OCH ₃
ОН	concentrated H ₂ SO ₄	
ОН		CI

• Draw the structure of the organic product(s) formed when each of the following compounds is treated with 4 M sodium hydroxide. The first two reactions proceed at room temperature; the last one requires heating.

2012-N-11

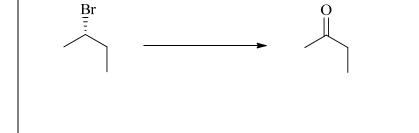

Marks 4

Compound	Organic Product(s)
Br	
Me H	
0	

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

4

• Consider compound (**P**), whose structure is shown below.



Give the full name of compound (**P**) that unambiguously describes its stereochemistry.

When compound (\mathbf{P}) reacts with bromine (Br_2) , two stereoisomers are formed. Draw the structure of both products and label all stereogenic centres appropriately.

• Devise a synthesis of the following compound from the starting material indicated. Note that more than one step will be required. Indicate all necessary reagents and the constitutional formulas of any intermediate compounds.

3

• Devise a synthesis of the following compounds from the starting materials indicated. Note that more than one step will be required. Indicate all necessary reagents and the constitutional formulas of any intermediate compounds.

Marks 6

• Complete the mechanism for the following reaction. Give the structure of the carbocation intermediate and indicate (using curly arrows) all the bonding changes that occur.

Marks 4

 When HBr reacts with 1-pentene, three products, L, M and N, are formed. L and M are enantiomers, whilst L and N (and M and N) are constitutional isomers. Give the structures of these products and explain how they form? Discuss the relative amounts of each product, paying attention to the regioselectivity and stereoselectivity of the reaction. Hint: You need to discuss important aspects of the reaction mechanism, including the relative stabilities of any intermediates, but you do not need to give the full mechanism using curly arrows. 			
		N	

CHEM1102 - CHEMISTRY 1B

DATA SHEET

Physical constants

Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Faraday constant, $F = 96485 \text{ C mol}^{-1}$

Planck constant, $h = 6.626 \times 10^{-34} \,\mathrm{J s}$

Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$

Rydberg constant, $E_R = 2.18 \times 10^{-18} \text{ J}$

Boltzmann constant, $k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}$

Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \, \text{C}^2 \, \text{J}^{-1} \, \text{m}^{-1}$

Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

 $= 0.08206 L atm K^{-1} mol^{-1}$

Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$

Mass of electron, $m_e = 9.1094 \times 10^{-31} \text{ kg}$

Mass of proton, $m_p = 1.6726 \times 10^{-27} \text{ kg}$

Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \text{ kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 $^{\circ}$ C = 24.5 L

Volume of 1 mole of ideal gas at 1 atm and 0 $^{\circ}$ C = 22.4 L

Density of water at 298 K = 0.997 g cm^{-3}

Conversion factors

$$1 \text{ atm} = 760 \text{ mmHg} = 101.3 \text{ kPa}$$

$$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$$

$$0 \text{ °C} = 273 \text{ K}$$

$$1 \text{ Hz} = 1 \text{ s}^{-1}$$

$$1 \text{ tonne} = 10^{3} \text{ kg}$$

$$1 \text{ Å} = 10^{-10} \text{ m}$$

$$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$$

Decimal fractions

$\begin{array}{ccccc} Fraction & Prefix & Symbol \\ 10^{-3} & milli & m \\ 10^{-6} & micro & \mu \\ 10^{-9} & nano & n \\ 10^{-12} & pico & p \end{array}$

Decimal multiples

Multiple	Prefix	Symbol
10^3	kilo	k
10^{6}	mega	M
10^{9}	giga	G

CHEM1102 - CHEMISTRY 1B

Standard Reduction Potentials, E°

Reaction	E° / V
$\text{Co}^{3+}(\text{aq}) + \text{e}^{-} \rightarrow \text{Co}^{2+}(\text{aq})$	+1.82
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.72
$MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$Au^{3+}(aq) + 3e^{-} \rightarrow Au(s)$	+1.50
$\text{Cl}_2 + 2\text{e}^- \rightarrow 2\text{Cl}^-(\text{aq})$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$NO_3^-(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96
$Pd^{2^+}(aq) + 2e^- \rightarrow Pd(s)$	+0.92
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$BiO^{+}(aq) + 2H^{+}(aq) + 3e^{-} \rightarrow Bi(s) + H_{2}O$	+0.32
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \to \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$	0 (by definition)
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$	0 (by definition) -0.04
	, •
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$	-0.04
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.04 -0.13
Fe ³⁺ (aq) + 3e ⁻ \rightarrow Fe(s) Pb ²⁺ (aq) + 2e ⁻ \rightarrow Pb(s) Sn ²⁺ (aq) + 2e ⁻ \rightarrow Sn(s) Ni ²⁺ (aq) + 2e ⁻ \rightarrow Ni(s) Cd ²⁺ (aq) + 2e ⁻ \rightarrow Cd(s)	-0.04 -0.13 -0.14 -0.24 -0.40
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$	-0.04 -0.13 -0.14 -0.24 -0.40
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_{2}O + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44 -0.74 -0.76 -0.83
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44 -0.74 -0.76
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_{2}O + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44 -0.74 -0.76 -0.83
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_{2}O + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ $Sc^{3+}(aq) + 3e^{-} \rightarrow Sc(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44 -0.74 -0.76 -0.83 -0.89
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_{2}O + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44 -0.74 -0.76 -0.83 -0.89 -1.68
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ $Sc^{3+}(aq) + 3e^{-} \rightarrow Sc(s)$ $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$ $Na^{+}(aq) + e^{-} \rightarrow Na(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44 -0.74 -0.76 -0.83 -0.89 -1.68 -2.09 -2.36 -2.71
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_{2}O + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ $Sc^{3+}(aq) + 3e^{-} \rightarrow Sc(s)$ $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44 -0.74 -0.76 -0.83 -0.89 -1.68 -2.09 -2.36

CHEM1102 - CHEMISTRY 1B Useful formulas

Us	eful formulas						
Quantum Chemistry	Electrochemistry						
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$						
$\lambda = h/mv$	$Moles\ of\ e^- = It/F$						
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$						
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$= E^{\circ} - (RT/nF) \times \ln Q$						
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E^{\circ} = (RT/nF) \times 2.303 \log K$						
$T \lambda = 2.898 \times 10^6 \text{ K nm}$	$= (RT/nF) \times \ln K$						
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$						
Acids and Bases	Gas Laws						
$pH = -log[H^+]$	PV = nRT						
$pK_{w} = pH + pOH = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$						
$pK_{w} = pK_{a} + pK_{b} = 14.00$	$E_{\rm k} = \frac{1}{2}mv^2$						
$pH = pK_a + \log\{[A^-] / [HA]\}$							
Radioactivity	Kinetics						
$t_{1/2} = \ln 2/\lambda$	$t_{1/2} = \ln 2/k$						
$A = \lambda N$	$k = Ae^{-Ea/RT}$						
$\ln(N_0/N_{\rm t}) = \lambda t$	$ ln[A] = ln[A]_o - kt $						
14 C age = 8033 ln(A_0/A_t) years	$ \ln\frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right) $						
Colligative Properties & Solutions	Thermodynamics & Equilibrium						
$\Pi = cRT$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$						
$P_{ m solution} = X_{ m solvent} imes P^{\circ}_{ m solvent}$	$\Delta G = \Delta G^{\circ} + RT \ln Q$						
c = kp	$\Delta G^{\circ} = -RT \ln K$						
$\Delta T_{ m f} = K_{ m f} m$	$\Delta_{\rm univ} S^{\circ} = R \ln K$						
$\Delta T_{ m b} = K_{ m b} m$	$K_{\rm p} = K_{\rm c} (RT)^{\Delta n}$						
Miscellaneous	Mathematics						
$A = -\log \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$						
$A = \varepsilon c l$	ln x = 2.303 log x						
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$	Area of circle = πr^2						
$4\pi\varepsilon_0 r$	Surface area of sphere = $4\pi r^2$						

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1																	2 HELIUM
HYDROGEN H																	Не
1.008																	4.003
3	4											5	6	7	8	9	10
Lithium	Beryllium Be											BORON B	CARBON	NITROGEN	OXYGEN	FLUORINE F	Neon Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
SODIUM	MAGNESIUM											ALUMINIUM	SILICON	PHOSPHORUS	SULFUR	CHLORINE	ARGON
Na	Mg											Al	Si	P	S	Cl	Ar
22.99	24.31								• 0	• •	•	26.98	28.09	30.97	32.07	35.45	39.95
19 POTASSIUM	20 CALCIUM	21 scandium	22 TITANIUM	23 VANADIUM	24 CHROMIUM	25 manganese	26 IRON	27	28 NICKEL	29 COPPER	30 zinc	31 GALLIUM	32 GERMANIUM	33 ARSENIC	34 SELENIUM	35 BROMINE	36 KRYPTON
K	Ca	Sc	Ti	${f V}$	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
RUBIDIUM Rb	STRONTIUM	YTTRIUM	zirconium Zr	NIOBIUM Nb	MOLYBDENUM Mo	Technetium Tc	RUTHENIUM Ru	Rhodium	PALLADIUM Pd	$\mathbf{A}\mathbf{g}$	Cadmium	INDIUM In	Sn	Sb	Tellurium Te	IODINE	XENON Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
CAESIUM	BARIUM		HAFNIUM	TANTALUM	TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	PLATINUM	GOLD	MERCURY	THALLIUM	LEAD	BISMUTH	POLONIUM	ASTATINE	RADON
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Po	At	Rn
132.91	137.34	00.102	178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87 Francium	88 radium	89-103	104 RUTHERFORDIUM	105 DUBNIUM	106 SEABORGIUM	107 BOHRIUM	108 hassium	109 meitnerium	110 darmstadtium	111 ROENTGENIUM	112 copernicium						
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn						
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]	[271]	[272]	[283]						

LANTHANOID S

ACTINOIDS

ID	57	58 CERIUM	59 Praseodymium	60 NEODYMIUM	61	62 Samarium	63 EUROPIUM	64 GADOLINIUM	65 TERBIUM	66 Dysprosium	67 HOLMIUM	68 erbium	69	70 ytterbium	71
עות	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	138.91	140.12	140.91	144.24	[144.9]	150.4	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
S	ACTINIUM	THORIUM	PROTACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM	CURIUM	BERKELLIUM	CALIFORNIUM	EINSTEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM
	Ac	Th	Pa	${f U}$	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	[227.0]	232.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]	[247.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]